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Universal scaling of Coulomb drag in graphene layers
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We study the Coulomb drag transresistivity between graphene layers employing the finite temperature density
response function. We analyze the Coulomb coupling betweenthe two layers and show that a universal scaling
behavior, independent of the interlayer distance can be deduced. We argue that this universal behavior may be
experimentally observable in a system of two carbon nanotubes of large radius.
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Coulomb interactions are responsible for a rich variety of
phenomena in low-dimensional systems. In particular, there
are many indications that in semi-metals, such as graphite,the
Coulomb forces remain long ranged due to the lack of conven-
tional screening. This property of graphite has intensifiedef-
forts from both experimental [1] and theoretical [2, 3, 4] sides
to understand its electronic properties and interaction-driven
transitions. However, a direct linear-response transportmea-
surements of the effect of electron-electron interactionsin sin-
gle isolated sample are usually difficult because for a perfectly
pure, translationally invariant system, the Coulomb interac-
tion cannot give rise to resistance. It has been demonstrated
[5] that when two independent electron gases with separate
electrical contacts are placed in close proximity and current
is driven through one, the interlayer electron-electron interac-
tion creates a frictional force which drags a current through
the other. This so-called Coulomb drag effect [6] is unique in
that it provides an opportunity to measure directly electron-
electron interactions.

The purpose of the present paper is to demonstrate that the
semi-metal band structure of graphene is responsible for an
unusual behavior of the Coulomb drag transresistivity. In ad-
dition our calculations show a universal scaling behavior of
the Coulomb drag transresistivity, which may be experimen-
tally observable.

It is convenient to characterize the Coulomb drag effect
in terms of the transresistivityρ21 because in a drag-rate
measurementsρ21 is directly related to the rate of momen-
tum transfer from particles in layer 1 to layer 2. How-
ever, when Kubo formalism is employed [7] one arrives at
the transconductivityσ21. These two quantities are defined
as ρ21 = E2/j1 with j2 = 0 and σ21 = j2/E1 with
E2 = 0, whereEi andji are, respectively, the electric field
and the current density in layeri. Since the transconduc-
tivity is caused by a screened interaction between spatially
separated layers,σ21 ≪ σ11 and ρ21 is related toσ21 via
ρ21 ≈ −σ21/(σ11σ22).

The expression for the dc Coulomb drag transresistivity in
two dimensional systems, in the RPA approximation, is given

by [6, 8]

ρ21(T ) = − ~
2

8π2e2kBTn1n2

∫ ∞

0

dKK3

×
∫ ∞

0

dω |V12(ω, K)|2 Imχ1(ω, K)Imχ2(ω, K)

sinh2 ~ω
2kBT

.

(1)

Our purpose is to describe Coulomb drag between two
graphenelayers, i.e. between two planar sheets of carbon
atoms, so that Eq. (1) is purely two dimensional [8].

In Eq. (1) V12(ω, K) = exp(−dK)v(K)/ǫ(ω, K) is the
screened interlayer interaction,v(K) = 2πe2/(Kε) is the
Fourier transform of the Coulomb interaction with the ap-
propriate low-frequency dielectric constantε, χi(ω, K) is the
noninteracting density-density response function (the “Lind-
hard function”),ni is the total carrier density,d is the inter-
layer distance,e is the electron charge andi = 1, 2 is the layer
index. The RPA dielectric functionǫ(ω, K) can be written as
[6]

ǫ(ω, K) = [1 − v(K)χ1(Ω, K)][1 − v(K)χ2(Ω, K)]

− exp(−2dK))v(K)χ1(Ω, K)v(K)χ2(Ω, K).
(2)

We stress that since in contrast to the total currentj(K =
0) = j1(K = 0) + j2(K = 0), the current in a given layer
ji(K = 0) is not conserved, the transresistivity Eq. (1) is
given by fluctuation diagrams (see Refs. [7]), which are simi-
lar but not identical to the Aslamazov-Larkin diagram known
from superconductivity [9], and not by a simple bubble as for
the conventional electrical conductivity. Thus the transresis-
tivity appears to be sensitive to all kinds of virtual excitations
that exist in the system whenever Imχ(ω, K) is nonzero.

Let us first of all derive the Lindhard function for graphene
sheetsincluding finite temperature effects. For a single
graphene layer the Lindhard function may be written as

χ(iΩ,K) = χ+(iΩ,K) + χ−(iΩ,K) (3)

with

χ+(iΩ,K) = −2

∫

d2k

(2π)2
×

{

A+

E+ − E− + i~Ω
[nF (µ + E−) − nF (µ + E+)]

+
A+

E+ − E− − i~Ω
[nF (µ − E+) − nF (µ − E−)]

}

,

(4)
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and

χ−(iΩ,K) = −2

∫

d2k

(2π)2
×

{

A−

E+ + E− + i~Ω
[nF (µ − E−) − nF (µ + E+)]

+
A−

E+ + E− − i~Ω
[nF (µ − E+) − nF (µ + E−)]

}

,

(5)

wherenF is the Fermi function,A± ≡ 1 ± ~
2v2

F
k+k

−
+∆

2

E+E
−

,

k± = k ± K/2, andE± =
√

~2v2
F k2

± + ∆2. HerevF is

the Fermi velocity,µ is the chemical potential and∆ is the
excitonic gap that may open due to the interaction between
quasiparticles [4]. Eqs. (3), (4) and (5) are obtained using
an effective long-wavelength description of the semimetallic
energy band structure of a single graphene layer with the dis-
persion lawE(k) = ±

√

~2v2
F k2 + ∆2 + µ which allows a

simple description in terms of the Dirac equation in 2D (see
Refs. [2, 3, 4]). In the absence of interactions, in undoped
graphite, the conduction and valence bands are touching each
other in the two inequivalentK points. This corresponds to
choosingµ = ∆ = 0, i.e. in undoped graphite, atT = 0
the negative bandE = −~vF k is filled and the positive one
E = ~vF k is empty. Notice that recent measurements of
quantum magnetic oscillations in graphite [10] confirm the
presence of holes with 2D Dirac-like spectrumE = ±~vF k,
and this seems to be responsible for the strongly-correlated
electronic phenomena in this material. The effects of doping
and opening of the excitonic gap in graphene can be taken
into account by considering nonzero chemical potentialµ and
nonzero excitonic gap∆, respectively.

Eqs. (3), (4) and (5) underline the most important difference
between graphene and the usual two dimensional electron gas
(see e.g. Refs. [8, 11]): while in the latter only theχ+ term
is present (intra-band excitations), in the graphene response
also theχ− term contributes: this reflects the possibility of
particle-hole excitations with the particle and hole belonging
to different (positive and negative) branches of the spectrum
(inter-bandexcitations).

Actually whenµ = kBT = 0 only the “unusual”χ− term
survives, and one can obtain an exact expression forχ(iΩn →
ω + i0, K) [12] which for ∆ = 0 takes a rather simple form
[2, 3]

χ(ω, K; T = 0) = χ−(ω, K) = −K2

4

×
[

θ(~vF K − |~ω|)
√

~2v2
F K2 − ~2ω2

+ i
sgn(ω)θ(|~ω| − ~vF K)

√

~2ω2 − ~2v2
F K2

]

.

(6)

For finite T the response function acquires anadditional
contributionfrom χ+. We find an analytic expression forχ+

in the limit of smallω andK but finite T andµ [13]. In fact
considering Eq. (4), in such a limit one obtainsA+ ≈ 2, so

that, setting∆ = 0, we obtain

χ+(ω, K) ≃ − 4

π

kBT

~2v2
F

ln

(

2 cosh
µ

2kBT

)

×
[

1 − |~ω|θ(|~ω| − ~vF K)
√

~2ω2 − ~2v2
F K2

+ i
~ωθ(~vF K − |~ω|)
√

~2v2
F K2 − ~2ω2

]

.

(7)

Eq. (7) is one of the results of the present paper.
For µ ≫ kBT Eq. (7) reduces to the Lindhard function

of the two dimensional electron gas (2DEG) [8, 11], while
for µ = 0 the prefactor before the square brackets is equal to
−(4 ln 2/π)kBT/~

2v2
F . Thus, as anticipated, forµ = kBT =

0 the only process that contributes to nonzero Imχ is due to
Eq. (5).

Comparing Eqs. (6) and (7), we notice that the domains
where the function Imχ±(ω, K), which ‘counts’ the num-
ber of particle-hole excitations of energyω and momentum
K, is nonzero are different:|ω| > vF K for Eq. (6) and
|ω| < vF K for Eq. (7). At the formal level this difference
in domains where particle-hole excitations are allowed comes
from the fact that Eq. (7) describes processes where two in-
volved quasiparticles are from the same branch of the spec-
trum (see Eq. (4)), while Eq. (6), as mentioned above, origi-
nates from processes where two quasiparticles belong to the
different branches of the spectrum (see Eq. (5)). Using the
Dirac equation analogies, one can say that for nonzero elec-
tron mass∆, Eq. (7) would describe electron-electron scatter-
ing, while Eq. (6) is related to the process of electron-positron
pair creation.

As predicted in Refs. [14] and experimentally confirmed
(see e.g. Ref. [6]) forT & 0.2TF (whereTF is the Fermi
temperature of the electron gas), in metallic electron gases, the
coupled acoustic and optic plasmon modes occurring in the
layered system do contribute to the transresistivity resulting
in its substantial enhancement.

In the case of graphene we do expect such enhance-
ment, since the semimetallic band structure of graphite allows
nonzero Imχ(ω, K) for |ω| > vF K even forT = 0. Due
to this peculiarity, andat variance with usual 2DEG Coulomb
drag, the transresistivity plasmon enhancement occurs already
at low temperatures,T & 0 (see Fig. 1, inset (c) where the
transresistivity is plotted for low values of the temperature
rescaled by the characteristic Coulomb energy, see below).

Following the method described in Ref. [6], we have de-
rived the plasmon dispersion relations for smallK and ω
(|ω| > vF K). Their expressions are given by

~ωac = 2
√

ln 2

√

e2

εd
kBTKd and (8)

~ωopt = 2
√

2
√

ln 2

√

e2

εd
kBT

√
Kd (9)

Notice that, apart from the factor
√

ln 2, Eqs. (8) and (9) are
formally similar to the well known electron liquid expres-
sions, except that the Fermi energyµ (µ = 0 in the undoped
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system we are considering) is substituted by the characteris-
tic Coulomb energyEC ≡ e2/(εd). Therefore the system
behavior will be in this case characterized by the crossover
between Coulomb and thermal energy. This allows us to de-
fine the dimensionless temperatureTa = kBT/EC such that
for Ta >> 1 the system will be in a non-degenerate regime,
while for Ta << 1 the system will be dominated by Coulomb
interactions. This simple energy scale-related analysis con-
firms that, even for small temperature (Ta << 1), plasmon en-
hancement will be important in graphene systems (see Fig. 1,
inset (c)).

If we introduce the dimensionless quantities̃ω =
~ω/

√
ECkBT , K̃ = Kd, we notice that Eqs. (8) and (9) ac-

quire theuniversalform

ω̃ac = 2
√

ln 2K̃ and (10)

ω̃opt = 2
√

2
√

ln 2
√

K̃, (11)

which is plotted in Fig. 1, inset (a). If in addition we define the
“fine-structure” constantα−1 = (~vF /d)/EC = ~vF ǫ/e2,
we find an importantscaling propertyof the transresistivity in
respect to the interlayer distanced: Eq. (1) in fact acquires the
form

ρ21(T ) =
1

n1n2d4
ρU (Ta, α), (12)

where

ρU (Ta, α) ≡ − ~

e2

1

2

α2

√
Ta

∫ ∞

0

dK̃K̃ exp(−2K̃) ×
∫ ∞

0

dω̃
Im χ̃1(ω̃, K̃; α)Imχ̃2(ω̃, K̃; α)

|ǫ(ω̃, K̃; α)|2 sinh2(ω̃/(2
√

Ta))

≡ − ~

e2

∫ ∞

0

dK̃

∫ ∞

0

dω̃I(ω̃, K̃; α), (13)

is a universal function ofTa andα, independentof the inter-
layer distanced.

In Fig. 1 we plotρU as a function ofTa. The solid line
corresponds to use in Eq. (13) the fullT -dependent response
functionχ(T ) (sum of Eqs. (6) and (7)); the dashed line cor-
responds instead to the approximation Eq. (6). The effect of
including χ+, i.e. including temperature dependent effects,
is quite significant. At variance with the usual Coulomb drag,
the strong transresistivity enhancement is due in this caseboth
to the enlargement of the single-particle phase-space – which
includes nowintra-bandexcitation – and to collective optical
and acoustic plasmons. All these excitations are forbiddenat
T=0 and not included inχ−.

The inset (b) of Fig. 1 presents the calculation ofρ21(T )
from Eq. (1) in respect to temperature, for two different in-
terlayer distance (d = 375Å andd = 1000Å) and a typical
2DEG density. This clearly shows that the dependence ond
of the transresistivity is very strong. In this respect it iseven
more remarkable that both curves of inset (b) collapse onto
the solid-line curve of the main panel when the reduced units
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FIG. 1: Universal transresistivityρU vs. dimensionless temperature
Ta. The dashed line corresponds to the approximated calculation
using χ = χ−. Inset (a): rescaled universal plasmon dispersion
relationω̃ vs. K̃. Inset (b): transresistivityρ12 vs. temperature for
two different value of the interlayer distanced (as labelled). Inset
(c): as main panel, but for low values ofTa In all calculations we
have usedvF = 9.7 × 105m/s andε = 6. [3]

are considered. It would be very interesting to check exper-
imentally such scaling behavior, which decouples the effect
of layers’ separation from the interlayer Coulomb interaction.
Eq. (12) in fact suggests that the main effect of separating two
interacting graphene layers by a distanced is to renormalize
the layer electron densities according to such a distance. We
emphasize that, when considering usual Coulomb drag exper-
iments between quantum wells, such effect would be hidden
by unavoidable experimental fluctuations of different param-
eters, such as finite quantum well thicknesses or doping. To
check our predictions, we suggest a Coulomb drag experiment
between twolarge radiuscarbon nanotubes, coaxial [16] or
with parallel axes. In this way the aforementioned fluctuations
would be automatically avoided allowing the experimental ob-
servation of such a scaling property. In the remaining part of
the paper, we concentrate on the plasmon behavior and on the
effect of this scaling property on plasmons. In Fig. 2 we plot
the rescaled integrand8π2I(ω̃, K̃; α)/(α

√
Ta) (see Eq. (13))

as a function of̃ω for differentK̃ andTa. Let us first focus on
Fig. 2(d). It shows the lowK̃ regime, in which the approxi-
mate expressions Eqs. (10) and (11) describing the plasmons
hold. The dimensionless temperatureTa is varied by a factor
10 betweenTa = 0.1 andTa = 1000, as labelled [15]. The
vertical dashed-double-dot line corresponds to the position of
the optical plasmon (from Eq. (11)), and the dashed line to the
acoustic plasmon one (from Eq. (10). Notice that plasmons
are present in the domain|ω| > ~vF only, so if the value of
ω̃ corresponding to the plasmon does not belong to such a re-
gion, the corresponding plasmon disappears. This is the case
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FIG. 2: Transresistivity integrand8π2I(ω̃, K̃)/(α
√

Ta) vsω̃ for dif-
ferent values ofK̃ (as labelled). Panels (a), (b), (c), (d) and (f):
Five values ofTa (separated by a factor 10) have been considered,
Ta = 0.1 → 1000, each corresponding to a different solid line (see
labelling in panel(d)). Dashed (dashed-double-dot) line corresponds
to analytical position of the acoustic (optical) plasmon. Panel(e):
Only two values ofTa are considered (as labelled); dashed lines cor-
respond to calculations by using the approximationχ = χ−.

for the acoustic plasmon atTa = 0.1 andTa = 1. Fig. 2(d)
clearly shows that the scaling law Eqs. (10) and (11) are well
satisfied, irrespectively of the value ofTa. In addition, due
to the rescaling8π2/(α

√
Ta), the strength of the optical plas-

mon becomes independent ofTa.
By inspecting Fig. 2(a), (b) and (c), we see that the behav-

ior predicted by Eqs. (10) and (11) is qualitatively respected
even forK̃ of the order of unity, especially as long as the
optical plasmon is considered. In particular these equations
predict an overlap of the two plasmons atK̃ = 2 (dashed line,
panel(b)). Indeed the two plasmons join for a reasonably close
value ofK̃ (see panel(c),̃K = 4 ). For increasing̃K (largeK̃
regime) though, a single plasmon-structure is found, i.e. the
plasmon behavior differs even qualitatively from Eqs. (10)and
(11) (see panel (f),̃K = 10).

Fig. 2(e) compares8π2I(ω̃, K̃; α)/(α
√

Ta) calculated us-
ing χ = χ− + χ+ (solid line), to the approximation obtained
using Eq. (6) (dashed lines), for two values ofTa. As can
be clearly seen, the integrand is influenced not only by the
plasmon structure, which enhances it for|ω| > ~vF , but
also by the single particle intraband excitation continuum: for
|ω| < ~vF , the integrand would be otherwise vanishing (see
dashed lines).

In this Letter we have presented the first, to the best of
our knowledge, calculation of Coulomb drag effects between
graphene layers, which include temperature-dependent ef-
fects. We have also predicted a universal behavior of the
Coulomb transresistivity, which is interlayer-distance inde-
pendent and suggested that this behavior may be experimen-

tally observable. Most of the calculations presented were
made for the simplest gapless form of the quasiparticle spec-
trum in graphene, as expected from tight-binding calculations
in the absence of interactions. These results, can be easily
generalized to take into account the possible opening of a di-
electric gap∆ in the quasiparticle spectrum [1, 4]. The inter-
play of this gap with the temperature and chemical potential
may lead to even richer physics and applications.
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